Set MathJax maxBuffer parameter

When trying to the run the code below to display a very large equation, MathJax throws the following error: MathJax internal buffer size exceeded; is there a recursive macro call?

I would like to increase the buffer size, but I have not been able to successfully do so. I tried following an old stackoverflow post, using .jupyter/custom/custom.js instead of the .ipython path and changing the MathJax portion to match the newer version.

Python 3.11.9
MathJax 3.2.2
jupyter_client 8.6.1
jupyter_core 5.7.2
jupyter-events 0.10.0
jupyter-lsp 2.2.5
jupyter_server 2.14.0
jupyter_server_terminals 0.5.3
jupyterlab 4.3.5
jupyterlab_pygments 0.3.0
jupyterlab_server 2.27.1
jupyterlab_widgets 3.0.13
mkdocs-jupyter 0.24.7
notebook 7.3.2
notebook_shim 0.2.4

from IPython.display import Math
Math(r"$\begin{align} &\underline{\text{Resources:}}\\ &A = 2 \cdot x + \left(\left(2 \cdot n - 4\right) \cdot \left(\left(\left(-1\right) \bmod \left(y + 1\right)\right) - 1\right)\right) + \left(\left(\left(8 \cdot \left(\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil - \left(\operatorname{nlz}{\left(- \frac{n}{2} \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) - 1\right) \cdot \left(\theta\left(\left(\operatorname{nlz}{\left(- \frac{n}{2} \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) + 0.5, 0\right)\right)\right) + \left(8 \cdot \left(\theta\left(\left(- \operatorname{nlz}{\left(- \frac{n}{2} \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) - 0.5, 0\right)\right)\right)\right) \cdot \left(\theta\left(\left(\operatorname{nlz}{\left(- \frac{n}{2} \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) + 0.5, 0\right)\right)\right) + \left(\left(\left(8 \cdot \left(\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil - \left(\operatorname{nlz}{\left(\left(- M - 1\right) \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) - 1\right) \cdot \left(\theta\left(\left(\operatorname{nlz}{\left(\left(- M - 1\right) \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) + 0.5, 0\right)\right)\right) + \left(8 \cdot \left(\theta\left(\left(- \operatorname{nlz}{\left(\left(- M - 1\right) \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) - 0.5, 0\right)\right)\right)\right) \cdot \left(\theta\left(\left(\operatorname{nlz}{\left(\left(- M - 1\right) \bmod 2^{\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil} \right)}\right) + 0.5, 0\right)\right)\right) + \operatorname{calc}_{\lambda}{\left(M,1 \right)} + \operatorname{calc}_{\lambda}{\left(M + \frac{n}{2},1 \right)} + \operatorname{calc}_{\lambda}{\left(\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2},1 \right)} + 3 \cdot \theta\left(\left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil - 1.5, 0\right) + 2 \cdot \left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil^{2} + 22 \cdot \left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil + \max\left(0, - \operatorname{select}_{elbow const}{\left(\left\lceil{\frac{M}{\operatorname{calc}_{\lambda}{\left(M,1 \right)}}}\right\rceil,0 \right)} + \left\lceil{\frac{M}{\operatorname{calc}_{\lambda}{\left(M,1 \right)}}}\right\rceil\right) + \max\left(0, - \operatorname{select}_{elbow const}{\left(\left\lceil{\frac{M}{\operatorname{calc}_{\lambda}{\left(M,y \cdot \left(\frac{n}{2} - 1\right) \right)}}}\right\rceil,0 \right)} + \left\lceil{\frac{M}{\operatorname{calc}_{\lambda}{\left(M,y \cdot \left(\frac{n}{2} - 1\right) \right)}}}\right\rceil\right) + \max\left(0, - \operatorname{select}_{elbow const}{\left(\left\lceil{\frac{M + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(M + \frac{n}{2},1 \right)}}}\right\rceil,0 \right)} + \left\lceil{\frac{M + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(M + \frac{n}{2},1 \right)}}}\right\rceil\right) + \max\left(0, - \operatorname{select}_{elbow const}{\left(\left\lceil{\frac{M + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(M + \frac{n}{2},y \cdot \left(\frac{n}{2} - 1\right) \right)}}}\right\rceil,0 \right)} + \left\lceil{\frac{M + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(M + \frac{n}{2},y \cdot \left(\frac{n}{2} - 1\right) \right)}}}\right\rceil\right) + \max\left(0, - \operatorname{select}_{elbow const}{\left(\left\lceil{\frac{\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2},1 \right)}}}\right\rceil,0 \right)} + \left\lceil{\frac{\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2},1 \right)}}}\right\rceil\right) + \max\left(0, - \operatorname{select}_{elbow const}{\left(\left\lceil{\frac{\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2},x + 2 \cdot \left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil + 2 \right)}}}\right\rceil,0 \right)} + \left\lceil{\frac{\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2}}{\operatorname{calc}_{\lambda}{\left(\frac{M \cdot \left(M + 1\right)}{2} + \frac{n}{2},x + 2 \cdot \left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil + 2 \right)}}}\right\rceil\right) - 6 \cdot \min\left(2, \left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil\right) - 2 \cdot \min\left(2, 2 \cdot \left\lceil{\frac{\log{\left(M + 1 \right)}}{\log{\left(2 \right)}}}\right\rceil\right) + 3\\ &B = 2 \cdot n + 2 \cdot x + \left(1 \bmod y\right) - 4 +1+1000\end{align}$")