Hello,
I tried to install the @jupyterlab/geojson-extension on a Jupyterlab Version 3.5.3 running on Jupyterhub on Centos 7.6. It gives an error message of “Please install nodejs >=12.0.0. nodejs may be installed using conda or directly from the nodejs website”. In looking at $node -v it shows v6.13.1. Ran $ conda install -c conda-forge nodejs to try and upgrade but it only installed node v6.13.1 on Centos 7.6 which seems to be the highest version conda can install on this OS. So next tried to install using NVM as root: $ nvm install lts/gallium . Now it gives $node -v as v16.20.2 . After restarting Jupyterhub it still shows in a Jupyter terminal node version is v6.13.1. Also $ whereis node
/root/.nvm/versions/node/v16.20.2/bin/node /data/opt/anaconda3/bin/node . So apparently the jupyterhub is invoking node from /data/opt/anaconda3/bin/node which has old v6.13.1 instead of from /root/.nvm/versions/node/v16.20.2 since NVM installs under the userid . Jupyterhub is running under root user and how to make it use the node in /root/.nvm/versions/node/v16.20.2 instead of /data/opt/anaconda3/bin/node . Thanks!
Note that jupyterlab-geojson is a prebuilt extension, so either of the following will put it in the correct place without rebuilding lab (or needing nodejs
):
pip install jupyterlab-geojson
conda install -c conda-forge jupyterlab-geojson
This can be verified with:
juyter labextension list
which should show a line something like:
@jupyterlab/geojson-extension v3.x.y installed OK
Mixing nvm
with conda
is basically recipe for disaster. And, under many circumstances, using anaconda
or defaults
might be a ToS violation. My general recommendation is:
- start with
Mambaforge
from conda-forge- never install anything else in the
base
- never install anything from
defaults
- don’t use the shell automation stuff, stick with
source /path/to/mambaforge/bin/activate
- never install anything else in the
- use an
environment.yml
to manage your jupyter environment, ideally with the kernel, server, and client in the same environment- splitting envs creates a bunch of other problems
Thanks @bollwyvl you are right. $ conda install -c conda-forge jupyterlab-geojson successfully installed the pre-built extension and I see now:
$ jupyter labextension list
JupyterLab v3.5.3
/data/opt/anaconda3/share/jupyter/labextensions
jupyterlab-plotly v5.9.0 enabled OK
nbdime-jupyterlab v2.2.0 enabled OK
jupyterlab-jupytext v1.3.8+dev enabled OK (python, jupytext)
@jupyter-widgets/jupyterlab-manager v5.0.5 enabled OK (python, jupyterlab_widgets)
@pyviz/jupyterlab_pyviz v2.0.2 enabled OK (python, pyviz_comms)
@jupyterlab/git v0.41.0 enabled OK (python, jupyterlab-git)
@jupyterlab/geojson-extension v3.4.0 enabled OK (python, jupyterlab-geojson)
Other labextensions (built into JupyterLab)
app dir: /data/opt/anaconda3/share/jupyter/lab
Now this leads to the next question how the normal users who use the JupyterLab GUI can click on the Extensions menu “Install” to install the other extensions since normal users will not be able to run "conda install -c conda-forge jupyterlab-geojson " as root. And they will not have write permissions to /data/opt/anaconda3/share/jupyter/labextensions although the Jupyterhub/JupyterLab is running under root user process. Also if they want to build a non-prebuilt extension that needs nodejs how can we install and point to the latest version of nodejs like v16.20.2 on Centos 7.6 since conda-forge will install max v6.13.1 on Centos 7.x. Thanks!
Yep, there are limitations. The best thing for your user of a locked down system that want non-prebuilt extensions… is to request the upstream distribute them as pre-built extensions.
I’d probably turn off the extension manager, as it is a very poor match for a multi-user setup, and indeed, there is no trivial way to offer per-user custom labextension paths in a single-process server. If users can’t be trusted users to install python packages, then they certainly shouldn’t be messing with npm
… and npm
(or pip
or conda
) should never be run as root
: there’s basically zero chance a user will be able to remotely debug what any of the above barfed on, and there’s a nonzero chance that user (or all the users) will end up with an entirely broken experience.
If this deployment is doing one-user-per-server-process hub (not clear from the above), then the JUPYTER_PATH
environment variable can be set at spawn time which would allow certain things to be specified per-user, but again, very peril-fraught. These users might also be able to use pip install --user
, but this is an entire other ball of deadly wax, and seldom works the way one might expect… conda
doesn’t even play that game.
Hello @bollwyvl what you said makes sense. Letting end-users install random extensions on a LocalProcessSpawner/jupyterhub-singleuser is not workable with the current Extensions Manager design unless somehow the extensions can be isolated per user in their own workspace. May not even be easy with dockerspawner or others that isolate users. So the better option for now would be to stick to conda command by the root user to install any needed extension requested by end-users using “conda install -c conda-forge extension-xxxxx”. Thanks!