``
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
stock_prices= pd.read_csv(“prices.csv”)
stock_prices
X = stock_prices.drop(columns=[“symbol”,“close”,“date”,“low”,“high”,“volume”])
X
y= stock_prices[“volume”]
y
#Training the model
model = SVR(kernel = “linear”)
X_train,X_test,y_train,y_test= train_test_split(X, y,test_size=0.2)
X_train,X_test,y_train,y_test
plt.scatter(X_train,y_train)
model.fit(X_train,y_train)
predictions = model.predict(X_test)
predictions
plt.scatter(X_test, predictions)
Checking Accuracy
model_score= model.score(X_test,y_test)
model_score
root_squared_score = r2_score(y_test, predictions)
root_squared_score
``