Can you check the new parameters were applied as expected using kubectl get serviced ... -o yaml (or describe).
Assuming it’s as expected I think it’s worth testing with a simpler minimal application, e.g. manually create YAML manifests for an Nginx deployment and service, and see if you can find a configuration that deploys a load balancer. Then we can work out how to get that into Z2JH.
See Below each yaml for each Service now updated, Ignore the Chart Version or Release I just updated to 4.0.1 and packaged with changes to release and test.
I’m afraid I don’t know why your LoadBalancer is stuck as pending- are there any clues in your AWS Load Balancer Controller logs?
If you’ve got an AWS support contract it might be worth asking AWS for help? I think it’s enough to share just the proxy-public service definition with them since all we care about for now is the creation of the load balancer, I don’t think the rest of the Z2JH stack matters for this.
So Im assuming the LB is stuck at pending as there is no Public or Internal Load Balancers in place, There is an istio gateway virtual service but ive tried also to use k port-forward svc to hub to bypass and get the same
Tried exact same conf using internal dns name for hosts: value getting the same error for loopback for both internal dns address and if forward svc to localhost.
Looked back into this and tried again with some additional configs to istio ingress and paths for /user and /hub to no avail, is there something else can add to debug to try trace the loopback ?
Have you disabled all Z2JH NetworkPolicies? Can you share your current Z2JH config?
Can you also try bypassing the load-balancer or ingress by configuring a NodePort and connecting directly to the nodes - you might need to modify your AWS security groups to allow that.
# fullnameOverride and nameOverride distinguishes blank strings, null values,
# and non-blank strings. For more details, see the configuration reference.
fullnameOverride: ""
nameOverride:
# enabled is ignored by the jupyterhub chart itself, but a chart depending on
# the jupyterhub chart conditionally can make use this config option as the
# condition.
enabled:
# custom can contain anything you want to pass to the hub pod, as all passed
# Helm template values will be made available there.
custom: {}
# imagePullSecret is configuration to create a k8s Secret that Helm chart's pods
# can get credentials from to pull their images.
imagePullSecret:
create: false
automaticReferenceInjection: true
registry:
username:
password:
email:
# imagePullSecrets is configuration to reference the k8s Secret resources the
# Helm chart's pods can get credentials from to pull their images.
imagePullSecrets: []
# hub relates to the hub pod, responsible for running JupyterHub, its configured
# Authenticator class KubeSpawner, and its configured Proxy class
# ConfigurableHTTPProxy. KubeSpawner creates the user pods, and
# ConfigurableHTTPProxy speaks with the actual ConfigurableHTTPProxy server in
# the proxy pod.
hub:
revisionHistoryLimit:
config:
JupyterHub:
admin_access: true
authenticator_class: dummy
default_url: /hub/home
cleanup_servers: true
KubeSpawner:
ip: "[::]"
Spawner:
http_timeout: 300 # Default is 30 seconds
start_timeout: 360 # Default is 60 seconds
service:
type: ClusterIP
annotations: {}
ports:
nodePort:
appProtocol:
extraPorts: []
loadBalancerIP:
baseUrl: /hub
cookieSecret:
initContainers: []
nodeSelector:
kubernetes.io/arch: amd64
tolerations: []
concurrentSpawnLimit: 64
consecutiveFailureLimit: 5
activeServerLimit:
deploymentStrategy:
## type: Recreate
## - sqlite-pvc backed hubs require the Recreate deployment strategy as a
## typical PVC storage can only be bound to one pod at the time.
## - JupyterHub isn't designed to support being run in parallell. More work
## needs to be done in JupyterHub itself for a fully highly available (HA)
## deployment of JupyterHub on k8s is to be possible.
type: Recreate
db:
type: sqlite-pvc
upgrade:
pvc:
annotations: {}
selector: {}
accessModes:
- ReadWriteOnce
storage: 1Gi
subPath:
storageClassName:
url:
password:
labels: {}
annotations: {}
command: []
args: []
extraConfig: {}
extraFiles: {}
extraEnv: {}
extraContainers: []
extraVolumes: []
extraVolumeMounts: []
image:
name: quay.io/jupyterhub/k8s-hub
tag: "4.0.0"
pullPolicy:
pullSecrets: []
resources: {}
podSecurityContext:
runAsNonRoot: true
fsGroup: 1000
seccompProfile:
type: "RuntimeDefault"
containerSecurityContext:
runAsUser: 1000
runAsGroup: 1000
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
lifecycle: {}
loadRoles: {}
services: {}
pdb:
enabled: false
maxUnavailable:
minAvailable: 1
networkPolicy:
enabled: true
ingress: []
egress: []
egressAllowRules:
cloudMetadataServer: true
dnsPortsCloudMetadataServer: true
dnsPortsKubeSystemNamespace: true
dnsPortsPrivateIPs: true
nonPrivateIPs: true
privateIPs: true
interNamespaceAccessLabels: ignore
allowedIngressPorts: []
allowNamedServers: false
namedServerLimitPerUser:
authenticatePrometheus:
redirectToServer:
shutdownOnLogout:
templatePaths: []
templateVars: {}
livenessProbe:
# The livenessProbe's aim to give JupyterHub sufficient time to startup but
# be able to restart if it becomes unresponsive for ~5 min.
enabled: true
initialDelaySeconds: 300
periodSeconds: 10
failureThreshold: 30
timeoutSeconds: 3
readinessProbe:
# The readinessProbe's aim is to provide a successful startup indication,
# but following that never become unready before its livenessProbe fail and
# restarts it if needed. To become unready following startup serves no
# purpose as there are no other pod to fallback to in our non-HA deployment.
enabled: true
initialDelaySeconds: 0
periodSeconds: 2
failureThreshold: 1000
timeoutSeconds: 1
existingSecret:
serviceAccount:
create: true
name:
annotations: {}
extraPodSpec: {}
rbac:
create: true
# proxy relates to the proxy pod, the proxy-public service, and the autohttps
# pod and proxy-http service.
proxy:
secretToken:
annotations: {}
deploymentStrategy:
## type: Recreate
## - JupyterHub's interaction with the CHP proxy becomes a lot more robust
## with this configuration. To understand this, consider that JupyterHub
## during startup will interact a lot with the k8s service to reach a
## ready proxy pod. If the hub pod during a helm upgrade is restarting
## directly while the proxy pod is making a rolling upgrade, the hub pod
## could end up running a sequence of interactions with the old proxy pod
## and finishing up the sequence of interactions with the new proxy pod.
## As CHP proxy pods carry individual state this is very error prone. One
## outcome when not using Recreate as a strategy has been that user pods
## have been deleted by the hub pod because it considered them unreachable
## as it only configured the old proxy pod but not the new before trying
## to reach them.
type: Recreate
## rollingUpdate:
## - WARNING:
## This is required to be set explicitly blank! Without it being
## explicitly blank, k8s will let eventual old values under rollingUpdate
## remain and then the Deployment becomes invalid and a helm upgrade would
## fail with an error like this:
##
## UPGRADE FAILED
## Error: Deployment.apps "proxy" is invalid: spec.strategy.rollingUpdate: Forbidden: may not be specified when strategy `type` is 'Recreate'
## Error: UPGRADE FAILED: Deployment.apps "proxy" is invalid: spec.strategy.rollingUpdate: Forbidden: may not be specified when strategy `type` is 'Recreate'
rollingUpdate: # service relates to the proxy-public service
service:
type: ClusterIP
labels: {}
annotations: {}
nodePorts:
http:
https:
disableHttpPort: false
extraPorts: []
loadBalancerIP:
loadBalancerSourceRanges: []
# chp relates to the proxy pod, which is responsible for routing traffic based
# on dynamic configuration sent from JupyterHub to CHP's REST API.
chp:
revisionHistoryLimit:
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
image:
name: quay.io/jupyterhub/configurable-http-proxy
# tag is automatically bumped to new patch versions by the
# watch-dependencies.yaml workflow.
#
tag: "4.6.2" # https://github.com/jupyterhub/configurable-http-proxy/tags
pullPolicy:
pullSecrets: []
extraCommandLineFlags: []
livenessProbe:
enabled: true
initialDelaySeconds: 60
periodSeconds: 10
failureThreshold: 30
timeoutSeconds: 3
readinessProbe:
enabled: true
initialDelaySeconds: 0
periodSeconds: 2
failureThreshold: 1000
timeoutSeconds: 1
resources: {}
defaultTarget:
errorTarget:
extraEnv: {}
nodeSelector:
kubernetes.io/arch: amd64
tolerations: []
networkPolicy:
enabled: true
ingress: []
egress: []
egressAllowRules:
cloudMetadataServer: true
dnsPortsCloudMetadataServer: true
dnsPortsKubeSystemNamespace: true
dnsPortsPrivateIPs: true
nonPrivateIPs: true
privateIPs: true
interNamespaceAccessLabels: ignore
allowedIngressPorts: [ http, https ]
pdb:
enabled: false
maxUnavailable:
minAvailable: 1
extraPodSpec: {}
# traefik relates to the autohttps pod, which is responsible for TLS
# termination when proxy.https.type=letsencrypt.
traefik:
revisionHistoryLimit:
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
image:
name: traefik
# tag is automatically bumped to new patch versions by the
# watch-dependencies.yaml workflow.
#
tag: "v3.2.0" # ref: https://hub.docker.com/_/traefik?tab=tags
pullPolicy:
pullSecrets: []
hsts:
includeSubdomains: false
preload: false
maxAge: 15724800 # About 6 months
resources: {}
labels: {}
extraInitContainers: []
extraEnv: {}
extraVolumes: []
extraVolumeMounts: []
extraStaticConfig: {}
extraDynamicConfig: {}
nodeSelector:
kubernetes.io/arch: amd64
tolerations: []
extraPorts: []
networkPolicy:
enabled: true
ingress: []
egress: []
egressAllowRules:
cloudMetadataServer: true
dnsPortsCloudMetadataServer: true
dnsPortsKubeSystemNamespace: true
dnsPortsPrivateIPs: true
nonPrivateIPs: true
privateIPs: true
interNamespaceAccessLabels: ignore
allowedIngressPorts: [ http, https ]
pdb:
enabled: false
maxUnavailable:
minAvailable: 1
serviceAccount:
create: true
name:
annotations: {}
extraPodSpec: {}
secretSync:
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
image:
name: quay.io/jupyterhub/k8s-secret-sync
tag: "4.0.0"
pullPolicy:
pullSecrets: []
resources: {}
labels: {}
https:
enabled: false
type: letsencrypt
#type: letsencrypt, manual, offload, secret
letsencrypt:
contactEmail: # Specify custom server here (https://acme-staging-v02.api.letsencrypt.org/directory) to hit staging LE
acmeServer: https://acme-v02.api.letsencrypt.org/directory
manual:
key:
cert:
secret:
name:
key: tls.key
crt: tls.crt
hosts: []
# singleuser relates to the configuration of KubeSpawner which runs in the hub
# pod, and its spawning of user pods such as jupyter-myusername.
singleuser:
podNameTemplate:
extraTolerations: []
nodeSelector:
kubernetes.io/arch: amd64
extraNodeAffinity:
required: []
preferred: []
extraPodAffinity:
required: []
preferred: []
extraPodAntiAffinity:
required: []
preferred: []
networkTools:
image:
name: quay.io/jupyterhub/k8s-network-tools
tag: "4.0.0"
pullPolicy:
pullSecrets: []
resources: {}
cloudMetadata:
# block set to true will append a privileged initContainer using the
# iptables to block the sensitive metadata server at the provided ip.
blockWithIptables: true
ip: 169.254.169.254
networkPolicy:
enabled: true
ingress:
- from:
- podSelector: {}
ports:
- protocol: TCP
port: 8888
egress: []
egressAllowRules:
cloudMetadataServer: false
dnsPortsCloudMetadataServer: true
dnsPortsKubeSystemNamespace: true
dnsPortsPrivateIPs: true
nonPrivateIPs: true
privateIPs: false
interNamespaceAccessLabels: ignore
allowedIngressPorts: []
events: true
extraAnnotations: {}
extraLabels:
hub.jupyter.org/network-access-hub: "true"
extraFiles: {}
extraEnv:
NOTEBOOK_ARGS: "--ip=[::] --port=8888"
lifecycleHooks: {}
initContainers: []
extraContainers: []
allowPrivilegeEscalation: false
uid: 1000
fsGid: 100
serviceAccountName:
storage:
type: dynamic
extraLabels: {}
extraVolumes: []
extraVolumeMounts: []
static:
pvcName:
subPath: "{username}"
capacity: 10Gi
homeMountPath: /home/jovyan
dynamic:
storageClass:
pvcNameTemplate:
volumeNameTemplate: volume-{user_server}
storageAccessModes: [ ReadWriteOnce ]
subPath:
image:
name: quay.io/jupyterhub/k8s-singleuser-sample
tag: "4.0.0"
pullPolicy:
pullSecrets: []
startTimeout: 300
cpu:
limit:
guarantee:
memory:
limit:
guarantee: 1G
extraResource:
limits: {}
guarantees: {}
cmd: [ "jupyterhub-singleuser", "--ip='::'", "--port=8888" ]
defaultUrl:
extraPodConfig: {}
profileList: []
# scheduling relates to the user-scheduler pods and user-placeholder pods.
scheduling:
userScheduler:
enabled: true
revisionHistoryLimit:
replicas: 2
logLevel: 4
# plugins are configured on the user-scheduler to make us score how we
# schedule user pods in a way to help us schedule on the most busy node. By
# doing this, we help scale down more effectively. It isn't obvious how to
# enable/disable scoring plugins, and configure them, to accomplish this.
#
# plugins ref: https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins-1
# migration ref: https://kubernetes.io/docs/reference/scheduling/config/#scheduler-configuration-migrations
#
plugins:
score:
# We make use of the default scoring plugins, but we re-enable some with
# a new priority, leave some enabled with their lower default priority,
# and disable some.
#
# Below are the default scoring plugins as of 2024-09-23 according to
# https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins.
#
# Re-enabled with high priority:
# - NodeAffinity
# - InterPodAffinity
# - NodeResourcesFit
# - ImageLocality
#
# Remains enabled with low default priority:
# - TaintToleration
# - PodTopologySpread
# - VolumeBinding
#
# Disabled for scoring:
# - NodeResourcesBalancedAllocation
#
disabled:
# We disable these plugins (with regards to scoring) to not interfere
# or complicate our use of NodeResourcesFit.
- name: NodeResourcesBalancedAllocation
# Disable plugins to be allowed to enable them again with a different
# weight and avoid an error.
- name: NodeAffinity
- name: InterPodAffinity
- name: NodeResourcesFit
- name: ImageLocality
enabled:
- name: NodeAffinity
weight: 14631
- name: InterPodAffinity
weight: 1331
- name: NodeResourcesFit
weight: 121
- name: ImageLocality
weight: 11
pluginConfig:
# Here we declare that we should optimize pods to fit based on a
# MostAllocated strategy instead of the default LeastAllocated.
- name: NodeResourcesFit
args:
scoringStrategy:
type: MostAllocated
resources:
- name: cpu
weight: 1
- name: memory
weight: 1
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
image:
# IMPORTANT: Bumping the minor version of this binary should go hand in
# hand with an inspection of the user-scheduelr's RBAC
# resources that we have forked in
# templates/scheduling/user-scheduler/rbac.yaml.
#
# Debugging advice:
#
# - Is configuration of kube-scheduler broken in
# templates/scheduling/user-scheduler/configmap.yaml?
#
# - Is the kube-scheduler binary's compatibility to work
# against a k8s api-server that is too new or too old?
#
# - You can update the GitHub workflow that runs tests to
# include "deploy/user-scheduler" in the k8s namespace report
# and reduce the user-scheduler deployments replicas to 1 in
# dev-config.yaml to get relevant logs from the user-scheduler
# pods. Inspect the "Kubernetes namespace report" action!
#
# - Typical failures are that kube-scheduler fails to search for
# resources via its "informers", and won't start trying to
# schedule pods before they succeed which may require
# additional RBAC permissions or that the k8s api-server is
# aware of the resources.
#
# - If "successfully acquired lease" can be seen in the logs, it
# is a good sign kube-scheduler is ready to schedule pods.
#
name: registry.k8s.io/kube-scheduler
# tag is automatically bumped to new patch versions by the
# watch-dependencies.yaml workflow. The minor version is pinned in the
# workflow, and should be updated there if a minor version bump is done
# here. We aim to stay around 1 minor version behind the latest k8s
# version.
#
tag: "v1.30.6" # ref: https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG
pullPolicy:
pullSecrets: []
nodeSelector:
kubernetes.io/arch: amd64
tolerations: []
labels: {}
annotations: {}
pdb:
enabled: true
maxUnavailable: 1
minAvailable:
resources: {}
serviceAccount:
create: true
name:
annotations: {}
extraPodSpec: {}
podPriority:
enabled: false
globalDefault: false
defaultPriority: 0
imagePullerPriority: -5
userPlaceholderPriority: -10
userPlaceholder:
enabled: true
image:
name: registry.k8s.io/pause
# tag is automatically bumped to new patch versions by the
# watch-dependencies.yaml workflow.
#
# If you update this, also update prePuller.pause.image.tag
#
tag: "3.10"
pullPolicy:
pullSecrets: []
revisionHistoryLimit:
replicas: 0
labels: {}
annotations: {}
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
resources: {}
corePods:
tolerations:
- key: hub.jupyter.org/dedicated
operator: Equal
value: core
effect: NoSchedule
- key: hub.jupyter.org_dedicated
operator: Equal
value: core
effect: NoSchedule
nodeAffinity:
matchNodePurpose: prefer
userPods:
tolerations:
- key: hub.jupyter.org/dedicated
operator: Equal
value: user
effect: NoSchedule
- key: hub.jupyter.org_dedicated
operator: Equal
value: user
effect: NoSchedule
nodeAffinity:
matchNodePurpose: prefer
# prePuller relates to the hook|continuous-image-puller DaemonsSets
prePuller:
revisionHistoryLimit:
labels: {}
annotations: {}
resources: {}
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
extraTolerations: []
# hook relates to the hook-image-awaiter Job and hook-image-puller DaemonSet
hook:
enabled: false
pullOnlyOnChanges: true
# image and the configuration below relates to the hook-image-awaiter Job
image:
name: quay.io/jupyterhub/k8s-image-awaiter
tag: "4.0.0"
pullPolicy:
pullSecrets: []
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
podSchedulingWaitDuration: 10
nodeSelector:
kubernetes.io/arch: amd64
tolerations: []
resources: {}
serviceAccount:
create: true
name:
annotations: {}
continuous:
enabled: false
pullProfileListImages: true
extraImages: {}
pause:
containerSecurityContext:
runAsNonRoot: true
runAsUser: 65534 # nobody user
runAsGroup: 65534 # nobody group
allowPrivilegeEscalation: false
capabilities:
drop: [ "ALL" ]
seccompProfile:
type: "RuntimeDefault"
image:
name: registry.k8s.io/pause
# tag is automatically bumped to new patch versions by the
# watch-dependencies.yaml workflow.
#
# If you update this, also update scheduling.userPlaceholder.image.tag
#
tag: "3.10"
pullPolicy:
pullSecrets: []
ingress:
enabled: false
annotations: {}
ingressClassName:
hosts:
- data-platform-jupyterhub.k8s.dev.dev.net
pathSuffix:
pathType: Prefix
tls: []
extraPaths: []
# cull relates to the jupyterhub-idle-culler service, responsible for evicting
# inactive singleuser pods.
#
# The configuration below, except for enabled, corresponds to command-line flags
# for jupyterhub-idle-culler as documented here:
# https://github.com/jupyterhub/jupyterhub-idle-culler#as-a-standalone-script
#
cull:
enabled: true
users: false # --cull-users
adminUsers: true # --cull-admin-users
removeNamedServers: false # --remove-named-servers
timeout: 3600 # --timeout
every: 600 # --cull-every
concurrency: 10 # --concurrency
maxAge: 0 # --max-age
debug:
enabled: true
global:
safeToShowValues: true
I had forgotten added some of those, still getting loopback after updating values and removing policies, tried complete helm uninstall and retried with updated config also and still same redirect loop.
latest log below
[D 2025-02-04 10:54:01.436 JupyterHub application:929] Loaded config file: /usr/local/etc/jupyterhub/jupyterhub_config.py
[I 2025-02-04 10:54:01.459 JupyterHub app:3346] Running JupyterHub version 5.2.1
[I 2025-02-04 10:54:01.459 JupyterHub app:3376] Using Authenticator: jupyterhub.auth.DummyAuthenticator-5.2.1
[I 2025-02-04 10:54:01.459 JupyterHub app:3376] Using Spawner: kubespawner.spawner.KubeSpawner-7.0.0
[I 2025-02-04 10:54:01.459 JupyterHub app:3376] Using Proxy: jupyterhub.proxy.ConfigurableHTTPProxy-5.2.1
[D 2025-02-04 10:54:01.461 JupyterHub app:1998] Connecting to db: sqlite:///jupyterhub.sqlite
[D 2025-02-04 10:54:01.483 JupyterHub orm:1509] database schema version found: 4621fec11365
[D 2025-02-04 10:54:01.488 JupyterHub orm:1509] database schema version found: 4621fec11365
[D 2025-02-04 10:54:01.536 JupyterHub app:2338] Loading roles into database
[D 2025-02-04 10:54:01.537 JupyterHub app:2347] Loading role jupyterhub-idle-culler
[W 2025-02-04 10:54:01.542 JupyterHub auth:1508] Using testing authenticator DummyAuthenticator! This is not meant for production!
[I 2025-02-04 10:54:01.619 JupyterHub app:2919] Creating service jupyterhub-idle-culler without oauth.
[D 2025-02-04 10:54:01.622 JupyterHub app:2685] Purging expired APITokens
[D 2025-02-04 10:54:01.623 JupyterHub app:2685] Purging expired OAuthCodes
[D 2025-02-04 10:54:01.625 JupyterHub app:2685] Purging expired Shares
[D 2025-02-04 10:54:01.626 JupyterHub app:2685] Purging expired ShareCodes
[D 2025-02-04 10:54:01.627 JupyterHub app:2459] Loading role assignments from config
[D 2025-02-04 10:54:01.645 JupyterHub app:2970] Initializing spawners
[D 2025-02-04 10:54:01.651 JupyterHub app:3120] Loaded users:
[I 2025-02-04 10:54:01.651 JupyterHub app:3416] Initialized 0 spawners in 0.007 seconds
[I 2025-02-04 10:54:01.656 JupyterHub metrics:373] Found 1 active users in the last ActiveUserPeriods.twenty_four_hours
[I 2025-02-04 10:54:01.656 JupyterHub metrics:373] Found 1 active users in the last ActiveUserPeriods.seven_days
[I 2025-02-04 10:54:01.657 JupyterHub metrics:373] Found 1 active users in the last ActiveUserPeriods.thirty_days
[I 2025-02-04 10:54:01.657 JupyterHub app:3703] Not starting proxy
[D 2025-02-04 10:54:01.657 JupyterHub proxy:925] Proxy: Fetching GET http://proxy-api:8001/api/routes
[D 2025-02-04 10:54:01.663 JupyterHub proxy:996] Omitting non-jupyterhub route '/'
[I 2025-02-04 10:54:01.663 JupyterHub app:3739] Hub API listening on http://:8081/hub/
[I 2025-02-04 10:54:01.663 JupyterHub app:3741] Private Hub API connect url http://hub:8081/hub/
[I 2025-02-04 10:54:01.663 JupyterHub app:3615] Starting managed service jupyterhub-idle-culler
[I 2025-02-04 10:54:01.663 JupyterHub service:423] Starting service 'jupyterhub-idle-culler': ['python3', '-m', 'jupyterhub_idle_culler', '--url=http://localhost:8081/hub/api', '--timeout=3600', '--cull-every=600', '--concurrency=10']
[I 2025-02-04 10:54:01.664 JupyterHub service:136] Spawning python3 -m jupyterhub_idle_culler --url=http://localhost:8081/hub/api --timeout=3600 --cull-every=600 --concurrency=10
[D 2025-02-04 10:54:01.665 JupyterHub spawner:1475] Polling subprocess every 30s
[D 2025-02-04 10:54:01.665 JupyterHub proxy:389] Fetching routes to check
[D 2025-02-04 10:54:01.665 JupyterHub proxy:925] Proxy: Fetching GET http://proxy-api:8001/api/routes
[D 2025-02-04 10:54:01.667 JupyterHub proxy:996] Omitting non-jupyterhub route '/'
[D 2025-02-04 10:54:01.667 JupyterHub proxy:392] Checking routes
[I 2025-02-04 10:54:01.667 JupyterHub proxy:477] Adding route for Hub: / => http://hub:8081
[D 2025-02-04 10:54:01.667 JupyterHub proxy:925] Proxy: Fetching POST http://proxy-api:8001/api/routes/
[I 2025-02-04 10:54:01.670 JupyterHub app:3772] JupyterHub is now running, internal Hub API at http://hub:8081/hub/
[D 2025-02-04 10:54:01.670 JupyterHub app:3339] It took 0.491 seconds for the Hub to start
[D 2025-02-04 10:54:01.823 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.79ms
[D 2025-02-04 10:54:01.831 JupyterHub base:366] Recording first activity for <APIToken('8dd5...', service='jupyterhub-idle-culler', client_id='jupyterhub')>
[I 2025-02-04 10:54:01.839 JupyterHub log:192] 200 GET /hub/api/ (jupyterhub-idle-culler@::1) 9.48ms
[D 2025-02-04 10:54:01.841 JupyterHub scopes:1010] Checking access to /hub/api/users via scope list:users
[I 2025-02-04 10:54:01.851 JupyterHub log:192] 200 GET /hub/api/users?state=[secret] (jupyterhub-idle-culler@::1) 10.63ms
[D 2025-02-04 10:54:02.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.55ms
[D 2025-02-04 10:54:04.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.64ms
[D 2025-02-04 10:54:06.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.52ms
[D 2025-02-04 10:54:08.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.53ms
[D 2025-02-04 10:54:10.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.58ms
[D 2025-02-04 10:54:12.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.61ms
[D 2025-02-04 10:54:14.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.52ms
[D 2025-02-04 10:54:16.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.51ms
[D 2025-02-04 10:54:17.310 JupyterHub base:411] Refreshing auth for admin
[D 2025-02-04 10:54:17.310 JupyterHub user:496] Creating <class 'kubespawner.spawner.KubeSpawner'> for admin:
[D 2025-02-04 10:54:17.313 JupyterHub _xsrf_utils:155] xsrf id mismatch b'FMymA-KlJU6vZuXNGWrRUMLSyPAdjXEygFUeIo06pmI=:fb91b22d09964b50bd50940a8a67e209' != b'atF6fQPnHnry_DJzHucYWOfbRjByN5umxU5XZSmD49k=:fb91b22d09964b50bd50940a8a67e209'
[I 2025-02-04 10:54:17.313 JupyterHub _xsrf_utils:125] Setting new xsrf cookie for b'atF6fQPnHnry_DJzHucYWOfbRjByN5umxU5XZSmD49k=:fb91b22d09964b50bd50940a8a67e209' {'path': '/hub/'}
[I 2025-02-04 10:54:17.338 JupyterHub log:192] 200 GET /hub/home (admin@2600:1f18:96c:2f04::d6fc) 41.57ms
[D 2025-02-04 10:54:17.508 JupyterHub log:192] 200 GET /hub/static/js/home.js?v=20250204105401 (@2600:1f18:96c:2f04::d6fc) 0.97ms
[D 2025-02-04 10:54:17.633 JupyterHub log:192] 200 GET /hub/static/favicon.ico?v=fde5757cd3892b979919d3b1faa88a410f28829feb5ba22b6cf069f2c6c98675fceef90f932e49b510e74d65c681d5846b943e7f7cc1b41867422f0481085c1f (@2600:1f18:96c:2f04::d6fc) 0.71ms
[D 2025-02-04 10:54:17.634 JupyterHub log:192] 200 GET /hub/static/js/jhapi.js?v=20250204105401 (@2600:1f18:96c:2f04::d6fc) 0.53ms
[D 2025-02-04 10:54:17.634 JupyterHub log:192] 200 GET /hub/static/components/moment/moment.js?v=20250204105401 (@2600:1f18:96c:2f04::d6fc) 0.80ms
[D 2025-02-04 10:54:17.757 JupyterHub log:192] 200 GET /hub/static/js/utils.js?v=20250204105401 (@2600:1f18:96c:2f04::d6fc) 0.65ms
[D 2025-02-04 10:54:18.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.57ms
[D 2025-02-04 10:54:18.904 JupyterHub log:192] 304 GET /hub/home (admin@2600:1f18:96c:2f04::d6fc) 4.58ms
[D 2025-02-04 10:54:20.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.52ms
[D 2025-02-04 10:54:22.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.54ms
[D 2025-02-04 10:54:24.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.53ms
[D 2025-02-04 10:54:26.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.57ms
[D 2025-02-04 10:54:28.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.53ms
[D 2025-02-04 10:54:30.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.57ms
[D 2025-02-04 10:54:32.083 JupyterHub scopes:1010] Checking access to /hub/spawn/admin via scope servers!server=admin/
[D 2025-02-04 10:54:32.083 JupyterHub pages:216] Triggering spawn with default options for admin
[D 2025-02-04 10:54:32.083 JupyterHub base:1095] Initiating spawn for admin
[D 2025-02-04 10:54:32.083 JupyterHub base:1099] 0/64 concurrent spawns
[D 2025-02-04 10:54:32.083 JupyterHub base:1104] 0 active servers
[I 2025-02-04 10:54:32.106 JupyterHub provider:661] Creating oauth client jupyterhub-user-admin
[D 2025-02-04 10:54:32.127 JupyterHub user:913] Calling Spawner.start for admin
[I 2025-02-04 10:54:32.130 JupyterHub log:192] 302 GET /hub/spawn/admin -> /hub/spawn-pending/admin (admin@2600:1f18:96c:2f04::d6fc) 50.30ms
[I 2025-02-04 10:54:32.140 JupyterHub reflector:297] watching for pods with label selector='component=singleuser-server' in namespace data-platform-jupyterhub
[D 2025-02-04 10:54:32.140 JupyterHub reflector:304] Connecting pods watcher
[I 2025-02-04 10:54:32.142 JupyterHub reflector:297] watching for events with field selector='involvedObject.kind=Pod' in namespace data-platform-jupyterhub
[D 2025-02-04 10:54:32.142 JupyterHub reflector:304] Connecting events watcher
[I 2025-02-04 10:54:32.144 JupyterHub spawner:2931] Attempting to create pvc claim-admin, with timeout 3
[I 2025-02-04 10:54:32.165 JupyterHub spawner:2947] PVC claim-admin already exists, so did not create new pvc.
[I 2025-02-04 10:54:32.166 JupyterHub spawner:2890] Attempting to create pod jupyter-admin, with timeout 3
[D 2025-02-04 10:54:32.253 JupyterHub scopes:1010] Checking access to /hub/spawn-pending/admin via scope servers!server=admin/
[I 2025-02-04 10:54:32.253 JupyterHub pages:397] admin is pending spawn
[I 2025-02-04 10:54:32.256 JupyterHub log:192] 200 GET /hub/spawn-pending/admin (admin@2600:1f18:96c:2f04::d6fc) 7.10ms
[D 2025-02-04 10:54:32.436 JupyterHub scopes:1010] Checking access to /hub/api/users/admin/server/progress via scope read:servers!server=admin/
[D 2025-02-04 10:54:32.439 JupyterHub spawner:2672] progress generator: jupyter-admin
[D 2025-02-04 10:54:32.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.59ms
[D 2025-02-04 10:54:34.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.51ms
[D 2025-02-04 10:54:36.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.54ms
[D 2025-02-04 10:54:38.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.57ms
[D 2025-02-04 10:54:40.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.58ms
[D 2025-02-04 10:54:42.149 JupyterHub reflector:390] pods watcher timeout
[D 2025-02-04 10:54:42.149 JupyterHub reflector:304] Connecting pods watcher
[D 2025-02-04 10:54:42.151 JupyterHub reflector:390] events watcher timeout
[D 2025-02-04 10:54:42.151 JupyterHub reflector:304] Connecting events watcher
[D 2025-02-04 10:54:42.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.59ms
[D 2025-02-04 10:54:44.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.51ms
[D 2025-02-04 10:54:46.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.52ms
[D 2025-02-04 10:54:48.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.50ms
[D 2025-02-04 10:54:50.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.55ms
[D 2025-02-04 10:54:52.156 JupyterHub reflector:390] pods watcher timeout
[D 2025-02-04 10:54:52.156 JupyterHub reflector:304] Connecting pods watcher
[D 2025-02-04 10:54:52.159 JupyterHub reflector:390] events watcher timeout
[D 2025-02-04 10:54:52.159 JupyterHub reflector:304] Connecting events watcher
[D 2025-02-04 10:54:52.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.51ms
[D 2025-02-04 10:54:54.807 JupyterHub spawner:3254] pod data-platform-jupyterhub/jupyter-admin events before launch: 2025-02-04T10:54:34.187307Z [Normal] Successfully assigned data-platform-jupyterhub/jupyter-admin to ip-10-82-113-232.ec2.internal
2025-02-04T10:54:36Z [Normal] AttachVolume.Attach succeeded for volume "pvc-a1dad947-d8fe-4b56-955b-2a5f9c039346"
2025-02-04T10:54:46Z [Normal] Pulling image "docker.internal.net/jupyterhub/k8s-network-tools:4.0.0"
2025-02-04T10:54:48Z [Normal] Successfully pulled image "docker.internal.net/jupyterhub/k8s-network-tools:4.0.0" in 1.283s (1.283s including waiting)
2025-02-04T10:54:48Z [Normal] Created container block-cloud-metadata
2025-02-04T10:54:48Z [Normal] Started container block-cloud-metadata
2025-02-04T10:54:48Z [Normal] Pulling image "docker.internal.net/jupyterhub/k8s-singleuser-sample:4.0.0"
2025-02-04T10:54:53Z [Normal] Successfully pulled image "docker.internal.net/jupyterhub/k8s-singleuser-sample:4.0.0" in 5.132s (5.132s including waiting)
2025-02-04T10:54:53Z [Normal] Created container notebook
2025-02-04T10:54:53Z [Normal] Started container notebook
[D 2025-02-04 10:54:54.814 JupyterHub spawner:1475] Polling subprocess every 30s
[D 2025-02-04 10:54:54.815 JupyterHub utils:292] Waiting 300s for server at http://[2600:1f18:96c:2f03:8acd::b]:8888/user/admin/api
[D 2025-02-04 10:54:54.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.50ms
[I 2025-02-04 10:54:55.142 JupyterHub log:192] 200 GET /hub/api (@2600:1f18:96c:2f03:8acd::b) 0.56ms
[D 2025-02-04 10:54:55.192 JupyterHub base:366] Recording first activity for <APIToken('18a6...', user='admin', client_id='jupyterhub')>
[D 2025-02-04 10:54:55.201 JupyterHub scopes:1010] Checking access to /hub/api/users/admin/activity via scope users:activity!user=admin
[D 2025-02-04 10:54:55.204 JupyterHub users:1006] Activity for user admin: 2025-02-04T10:54:55.126170Z
[D 2025-02-04 10:54:55.204 JupyterHub users:1024] Activity on server admin/: 2025-02-04T10:54:55.126170Z
[I 2025-02-04 10:54:55.212 JupyterHub log:192] 200 POST /hub/api/users/admin/activity (admin@2600:1f18:96c:2f03:8acd::b) 21.87ms
[D 2025-02-04 10:54:55.676 JupyterHub utils:328] Server at http://[2600:1f18:96c:2f03:8acd::b]:8888/user/admin/api responded in 0.86s
[D 2025-02-04 10:54:55.676 JupyterHub _version:73] jupyterhub and jupyterhub-singleuser both on version 5.2.1
[I 2025-02-04 10:54:55.676 JupyterHub base:1124] User admin took 23.593 seconds to start
[I 2025-02-04 10:54:55.676 JupyterHub proxy:331] Adding user admin to proxy /user/admin/ => http://[2600:1f18:96c:2f03:8acd::b]:8888
[D 2025-02-04 10:54:55.676 JupyterHub proxy:925] Proxy: Fetching POST http://proxy-api:8001/api/routes/user/admin
[I 2025-02-04 10:54:55.680 JupyterHub users:899] Server admin is ready
[I 2025-02-04 10:54:55.680 JupyterHub log:192] 200 GET /hub/api/users/admin/server/progress?_xsrf=[secret] (admin@2600:1f18:96c:2f04::d6fc) 23247.35ms
[D 2025-02-04 10:54:55.823 JupyterHub scopes:1010] Checking access to /hub/spawn-pending/admin via scope servers!server=admin/
[I 2025-02-04 10:54:55.823 JupyterHub log:192] 302 GET /hub/spawn-pending/admin -> /user/admin/ (admin@2600:1f18:96c:2f04::d6fc) 3.90ms
[I 2025-02-04 10:54:55.951 JupyterHub log:192] 302 GET /user/admin/ -> /hub/user/admin/ (@2600:1f18:96c:2f04::d6fc) 0.57ms
[I 2025-02-04 10:54:56.086 JupyterHub log:192] 302 GET /hub/user/admin/ -> /user/admin/?redirects=1 (admin@2600:1f18:96c:2f04::d6fc) 3.56ms
[I 2025-02-04 10:54:56.212 JupyterHub log:192] 302 GET /user/admin/?redirects=1 -> /hub/user/admin/?redirects=1 (@2600:1f18:96c:2f04::d6fc) 0.61ms
[W 2025-02-04 10:54:56.345 JupyterHub base:1844] Redirect loop detected on /hub/user/admin/?redirects=1
[D 2025-02-04 10:54:56.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.59ms
[I 2025-02-04 10:54:58.346 JupyterHub log:192] 302 GET /hub/user/admin/?redirects=1 -> /user/admin/?redirects=2 (admin@2600:1f18:96c:2f04::d6fc) 2004.57ms
[I 2025-02-04 10:54:58.477 JupyterHub log:192] 302 GET /user/admin/?redirects=2 -> /hub/user/admin/?redirects=2 (@2600:1f18:96c:2f04::d6fc) 0.58ms
[W 2025-02-04 10:54:58.609 JupyterHub base:1844] Redirect loop detected on /hub/user/admin/?redirects=2
[D 2025-02-04 10:54:58.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.54ms
[D 2025-02-04 10:55:00.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.63ms
[D 2025-02-04 10:55:01.672 JupyterHub proxy:925] Proxy: Fetching GET http://proxy-api:8001/api/routes
[D 2025-02-04 10:55:01.690 JupyterHub proxy:392] Checking routes
[D 2025-02-04 10:55:02.164 JupyterHub reflector:390] pods watcher timeout
[D 2025-02-04 10:55:02.164 JupyterHub reflector:304] Connecting pods watcher
[D 2025-02-04 10:55:02.175 JupyterHub reflector:390] events watcher timeout
[D 2025-02-04 10:55:02.175 JupyterHub reflector:304] Connecting events watcher
[I 2025-02-04 10:55:02.612 JupyterHub log:192] 302 GET /hub/user/admin/?redirects=2 -> /user/admin/?redirects=3 (admin@2600:1f18:96c:2f04::d6fc) 4006.33ms
[D 2025-02-04 10:55:02.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.54ms
[I 2025-02-04 10:55:02.962 JupyterHub log:192] 302 GET /user/admin/?redirects=3 -> /hub/user/admin/?redirects=3 (@2600:1f18:96c:2f04::d6fc) 0.58ms
[W 2025-02-04 10:55:03.091 JupyterHub base:1844] Redirect loop detected on /hub/user/admin/?redirects=3
[D 2025-02-04 10:55:04.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.53ms
[D 2025-02-04 10:55:06.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.59ms
[D 2025-02-04 10:55:08.838 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.56ms
[D 2025-02-04 10:55:10.839 JupyterHub log:192] 200 GET /hub/health (@2600:1f18:96c:2f04::80a3) 0.80ms
[I 2025-02-04 10:55:11.092 JupyterHub log:192] 302 GET /hub/user/admin/?redirects=3 -> /user/admin/?redirects=4 (admin@2600:1f18:96c:2f04::d6fc) 8004.64ms
[I 2025-02-04 10:55:11.238 JupyterHub log:192] 302 GET /user/admin/?redirects=4 -> /hub/user/admin/?redirects=4 (@2600:1f18:96c:2f04::d6fc) 0.62ms
[W 2025-02-04 10:55:11.367 JupyterHub web:1873] 500 GET /hub/user/admin/?redirects=4 (2600:1f18:96c:2f04::d6fc): Redirect loop detected.
[D 2025-02-04 10:55:11.367 JupyterHub base:1519] Using default error template for 500```